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Predicting micronutrients of wheat using hyperspectral imaging 
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A B S T R A C T   

Micronutrients are the key factors to evaluate the nutritional quality of wheat. However, measuring micro-
nutrients is time-consuming and expensive. In this study, the potential of hyperspectral imaging for predicting 
wheat micronutrient content was investigated. The spectral reflectance of wheat kernels and flour was acquired 
in the visible and near-infrared range (VIS-NIR, 375–1050 nm). Afterwards, wheat micronutrient contents were 
measured and their associations with the spectra were modeled. Results showed that the models based on the 
spectral reflectance of wheat kernel achieved good predictions for Ca, Mg, Mo and Zn (r2 > 0.70). The models 
based on the spectra reflectance of wheat flour showed good predictive capabilities for Mg, Mo and Zn 
(r2

> 0.60). The prediction accuracy was higher for wheat kernels than for the flour. This study showed the 
feasibility of hyperspectral imaging as a non-invasive, non-destructive tool to predict micronutrients of wheat.   

1. Introduction 

Being a major staple food crop, wheat provides about 20% of the 
total dietary calories and proteins worldwide (Shiferaw et al., 2013). 
Wheat also contains several other essential nutrients, including dietary 
fiber, lipids, micronutrients and phytochemicals, which contribute to 
human health (Shewry, 2009). Although wheat contains a variety of 
nutrients, it cannot meet the nutritional needs of the human body when 
people are only relying on wheat as the major source of nutrition. Thus, 
the problem of “Hidden Hunger” is particularly acute in some devel-
oping countries where wheat is the staple food (Gómez-Galera et al., 
2010). The World Health Organization (WHO) defines “Hidden Hunger” 
as an inadequate or unbalanced intake of nutrients. The Copenhagen 
Consensus listed micronutrient deficiencies as the fifth biggest global 
challenge to human health in 2008. It is estimated that 2 billion people 
worldwide suffer from one or more chronic micronutrient deficiencies 
(Kumssa et al., 2015), and China accounts for 15% of the total. There-
fore, it is crucial to evaluate and improve the nutritional quality of wheat 
in the context of global food and nutrition security. 

Biofortification through wheat breeding is one of the primary ways 
to improve the nutritional quality of wheat (Rawat, Neelam, Tiwari, & 
Dhaliwal, 2013). However, screening a large amount of wheat germ-
plasms needs plenty of laboratory-based measurements of wheat nutri-
tional and quality parameters, including micronutrient measurements. 
Micronutrients, such as boron (B), calcium (Ca), copper (Cu), iron (Fe), 
magnesium (Mg), manganese (Mn), molybdenum (Mo) and zinc (Zn), 
are essential nutrients which the human body needs in small quantities 
(Bouis & Welch, 2010). Traditional chemical methods for the determi-
nation of micronutrient contents have high accuracy, but they have 
some disadvantages, such as they are time-consuming, laborious, 
expensive and contribute to environmental contamination. In addition, 
the traditional chemical methods cannot complete the micronutrient 
determination of large numbers of wheat germplasms economically and 
quickly, which limits the applicability in breeding programs. Therefore, 
it is necessary to develop a high-throughput and economical method for 
the determination of micronutrients in wheat. 

Near-infrared (NIR) spectroscopy has been increasingly used for 
kernel quality measurements, such as wheat moisture content (Peiris & 
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Dowell, 2011), protein content (Shi, Lei, Louzada Prates, & Yu, 2019), 
gluten protein content (Cai, 2017) and amylose content (Delwiche, 
Graybosch, Amand, & Bai, 2011). NIR spectroscopy allows to charac-
terize sample constituents using spectra from the ‘point-source’ mea-
surements, but usually, it lacks the visible spectral region and spatially- 
explicit spectral variations that might be useful for determining minor 
components (Gowen et al., 2007). Therefore, NIR spectroscopy cannot 
fully capture the gradient of internal compositions in samples. Hyper-
spectral imaging (HSI) is a new technique that integrates conventional 
spectroscopy and imaging to capture both spatial and spectral charac-
teristics of samples (Gowen et al., 2007). Although HSI was originally 
developed for remote sensing, it has become a high-throughput non- 
destructive tool for grain sample analysis. HSI has been successfully 
applied to measure the cereal quality attributes, such as wheat kernel 
hardness (Mahesh, Jayas, Paliwal, & White, 2015), water content 
(Zheng et al., 2016) and protein content (Caporaso, Whitworth, & Fisk, 
2018a; Mahesh et al., 2015). Also, HSI has been applied to measure the 
cereal safety attributes, such as Fusarium infection and mycotoxin 
contamination (Alisaac et al., 2019), sprouting detection (Xing et al., 
2009) and parasitic contamination (Singh, Jayas, Paliwal, & White, 
2009). However, the potential of HSI technology for measuring cereal 
multiple micronutrients is still underexplored. 

The distribution of micronutrients in wheat kernels is uneven, and 
most of the micronutrients are mainly located in the seed coat and al-
eurone layer (Persson et al., 2016). HSI technology increases the spatial 
dimension and can obtain spectral information of each pixel in the 
image, which is promising for analyzing samples of heterogeneous na-
ture (Manley, 2014). Micronutrients (e.g., Ca, Mg, B, Cu, Fe, Mn, Mo and 
Zn) are not spectrally active compounds, and they do not produce active 
spectral absorption characteristics in the VIS-NIR region (Pandey, Ge, 
Stoerger, & Schnable, 2017). Instead, these micronutrients can be 
indirectly measured by co-variation with the organic components in the 
kernel (Manley, 2014). For example, Zn is associated with gliadin, glu-
tenin, albumin and globulin concentrations in wheat kernels (Liu, Wang, 
Rengel, & Zhao, 2015). Persson et al. (2016) also demonstrated the 
presence of zinc-binding proteins and zinc-containing enzymes in wheat 
endosperm. However, to which extent the different micronutrients can 
be predicted using HSI requires further investigations. 

The morphological differences of samples may affect the use of 
spectral reflectance for the prediction of sample constituents. It has been 
shown that the spectral signature of wheat kernels is different from flour 
produced from these kernels (Alisaac et al., 2019; Delwiche, Graybosch, 
Amand, & Bai, 2011). Therefore, the predictions may be different be-
tween using the spectral reflectance of kernel and flour. In addition, the 
information related to the natural variability of individual samples can 
be reduced when using ground samples, as grinding produces a relative 
homogeneous material for the spectral imaging camera (Caporaso, 
Whitworth, & Fisk, 2018b). It is argued that better predictions can be 
obtained by using the spectral data resulted from measuring the ground 
samples compared to measuring the whole kernels (Caporaso, Whit-
worth, & Fisk, 2018b). Yet, grinding samples is still a time-consuming 
procedure that slows down the entire measurement pipeline when a 
large number of samples need to be measured. If the prediction results 
based on the spectral reflectance of the kernel are not significantly 
different from that based on the spectral reflectance of ground sample, 
kernel spectral measurements will bring new opportunities to the rapid 
determination of micronutrients in grains. Therefore, the difference 
between using wheat kernel and flour samples for the spectroscopic 
prediction of micronutrient contents need to be further investigated. 

In this study, we proposed an economical approach for rapid deter-
mination of micronutrients in wheat grains using HSI, and we hypoth-
esized that grain micronutrients can be predicted by directly imaging the 
intact kernels. Accordingly, our objectives were 1) to evaluate the 
feasibility of using HSI to estimate wheat micronutrient, including the B, 
Ca, Cu, Fe, Mg, Mn, Mo and Zn; and 2) to evaluate whether micro-
nutrient contents of wheat could be predicted directly from the 

hyperspectral reflectance of the wheat kernel, without destructive pre-
processing of kernel samples into flour. 

2. Materials and methods 

2.1. Site description, wheat sample collection 

The field experiments were implemented at Wuqiao Experimental 
Station of China Agricultural University (Hebei Province, China; 
116.3◦E, 37.4◦N; altitude: 20 m) in 2017–2019. Across years and sites, 
different agronomical management practices and genotypes were used 
in eight experiments to reflect a gradient in the micronutrient content in 
wheat kernels (Table S1). Rainfall and temperature during the two 
growing seasons are shown in Fig. S1. Thirteen wheat cultivars were 
used in the study (Table S1, Table S2), i.e. the Beijing 8, Fengkang 8, 
Nongda 139, Jing 411, and nine cultivars currently still cultivated in 
China (Gaoyou 2018, Gaoyou 5766, Hanmai 15, Jimai 22, Nongda 399, 
Shimai 22, Zhongmai 1062, Zhongmai 175 and Zhongmai 578). A total 
of 631 samples of wheat kernels were collected at complete maturity. 
The information of the specific source for wheat samples is shown in 
Table S1. After wheat kernel samples were naturally air-dried, hyper-
spectral images were acquired. Then the wheat kernel samples were 
washed five times with deionized water, and dried at 70℃ to constant 
weight, ground with a ball mill using the zirconia grinding tank. The 
hyperspectral image of wheat flour samples was also collected by HSI 
and then chemically analyzed for micronutrient contents. 

2.2. Hyperspectral imaging process 

In this experiment, an HSI system was used to collect the spectral 
image of samples. The HSI system consists of a hyperspectral imager, a 
dark box, a lighting system, a lifting platform and a computer (Fig. 1a). 
The portable VIS-NIR hyperspectral imager SOC710-VP (Surface Optics 
Corporation, USA) was used to acquire the spectral images. It covers the 
spectral range from 375 to 1050 nm at 5 nm increments for a total of 128 
bands, with an image resolution of 690 × 520 pixels. The experiment 
was performed in a dark box in order to reduce the effect of natural light. 
The lighting system consists of four halogen lamps (60 W) around the 
top of the dark box. The wheat kernel (20–25 g) or flour (7–10 g, ~ 1 cm 

Fig. 1. Hyperspectral imaging acquisition system. The HSI system (a) consists 
of a hyperspectral imager, a dark box, a lighting system, a lifting platform and a 
computer. (b) Wheat kernel sample, (c) wheat flour sample. 
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depth) samples were put in a plastic box (6 cm in diameter, 2 cm in 
height) and placed on the lifting platform. Before imaging, the flour was 
pressed to be flattened with plastics (prevent metal contamination). The 
spectral reflectance of 9 samples were captured at the same time 
(Fig. 1b, c). Images were captured and saved to the computer using the 
HyperScanner2.0 software. During this process, the gray reference panel 
of known reflectance was placed in the same imaging area as the sample. 
All images were collected under the same conditions. Raw images were 
corrected for dark-offset based on the dark current recorded in each 
image. Afterwards, the gray reference panel in each raw image was used 
to perform the radiometric calibration, and then a reflectance image was 
obtained. After converting the raw spectral radiance image into a 
spectral reflectance image, the average reflectance of the region of in-
terest (ROI) for each sample was extracted from the image by using 
Spectral Radiance Analysis Software (Surface Optics Corporation, USA). 
When selecting the ROI, the shadows and highlights in the image were 
excluded. 

2.3. Determination of wheat kernel micronutrient content 

Micronutrient content measured from wheat flour, 0.2 ~ 0.3 g (ac-
curate to 0.0001 g) sample was placed in a microwave digestion tank, 
then added 2:1 HNO3:H2O2 acid mixture and standing for 12 h. After 
standing, the sample was digested by the microwave digestion apparatus 
(CEM Mars6, USA). Digested solution of the sample was transferred to a 
25 ml volumetric flask, added up deionized water to dilute to gradua-
tion, shaken up evenly and then filtered with a 0.45 μm filter membrane. 
Filter liquor was analyzed for B, Ca, Cu, Fe, Mg, Mn, Mo and Zn using the 
Inductively coupled Plasma Atomic Emission Spectrometer (Thermo- 
ICAP6300, USA). 

2.4. Modeling 

Before modeling, the outliers from the measured micronutrients 
dataset were identified and removed using the Tukey’s rule (Coast et al., 
2019), and hyperspectral outliers were detected and removed using a 
Monte Carlo cross-validation based method (Liu, Cai, & Shao, 2008). 
The outlier removal was performed independently for each dataset for 
micronutrient, and the kernel- and flour-spectral data. Details of the 
sample number removed are shown in Table S3. The final number of 
observations for each element prediction model ranges from 489 to 567 
and 485 to 563 for wheat kernel and flour, respectively. In accordance 
with the principle of maintaining the uniform distribution of each wheat 
cultivar in each subset, the measured micronutrients data were divided 
into two datasets: (1) a calibration data set with 80% of the observa-
tions; (2) a validation data set comprising the remaining 20% observa-
tions. The balanced split function create Data Partition in the “caret” 
package was used to maintain an even distribution of wheat cultivar in 
calibration and validation subset (Kuhn, 2015). This technique performs 
the random sampling within each wheat cultivar and would preserve the 
same cultivar distribution of calibration and validation data to overall 
data. 

The spectral preprocessing, such as 1st derivative (FD), 2nd deriva-
tive (SD), constant offset elimination (COE), vector normalization (VN), 
min–max normalization (MMN) and multiplicative scatter correction 
(MSC), was used to screen the model with the highest accuracy. 

Partial least squares regression (PLSR) was used to model the spectra 
and nutrient trait relationships (Atzberger, Guérif, Baret, & Werner, 
2010). Spectral wavelengths of 375–1050 nm were used for all element 
predictions. Model was created for each nutrient element, the perfor-
mance of each model was evaluated using the coefficient of determi-
nation (r2), root mean square error (RMSE) and regression bias (Reg. 
bias) of prediction from the validation dataset. To quantify the differ-
ence in predictive performance between the two materials, the differ-
ence between the wheat kernel and wheat flour divided by the wheat 
flour was defined as the variation amplitude. The predictive power was 

classified according to Ely et al. (2019) and Coast et al. (2019). The 
predictive capability of the model was considered as, i) very high when 
r2 > 0.85, ii) good when 0.85 > r2 > 0.60, iii) medium when 
0.60 > r2 > 0.50, and iv) poor when r2 < 0.50. The relative contribution 
of each wavelength to the PLSR model was evaluated using the variable 
importance of projection (VIP) (Ely et al., 2019). Wavelength selection 
based on VIP result (the wavelength of VIP > 0.8 was selected) was used 
to screen the model with higher accuracy. PLSR models were imple-
mented with the “pls” package in the R software (R Core Team, 2019). 

3. Results 

3.1. Wheat kernel and wheat flour reflectance spectral properties 

The spectral reflectance of the wheat kernel (n = 631) and wheat 
flour (n = 631) were quite different from each other (Fig. 2a and b). 
Although the spectral reflectance of the wheat kernel and wheat flour 
both showed a parabola trend with the increased wavelength, the peak 
of the wheat kernel was lower than wheat flour. The average reflectance 
of the wheat flour samples was higher than that of the wheat kernel 
samples. The wheat kernel reflectance showed the largest variations in 
the near-infrared region (Fig. 2a), while the wheat flour reflectance 
showed variations in the both visible and near-infrared regions (Fig. 2b). 

3.2. Variation in wheat micronutrient content 

Descriptive statistics for the micronutrient contents of wheat kernel 
and flour are shown in Table 1. For the micronutrient data used in the 
wheat kernel model, B has the highest coefficient of variation 
(CV = 38.6%), followed by Mo (CV = 24.8%), and the smallest by Mg 
(CV = 7.8%). The micronutrient data used in the wheat flour model 
showed the same regularity. In general, the content of wheat nutrients 
showed a significant variability among the 13 selected cultivars 
(Fig. S2). 

3.3. PLSR prediction model 

The prediction results of wheat kernel showed that the models ach-
ieved good predictive power for Ca, Mg, Mo and Zn content. In addition, 
they showed a medium predictive capability for Cu content. While the 
models had poor predictive capabilities for B, Fe and Mn content 
(Table 2). The prediction results of wheat flour also showed the models 
achieved good predictive power for Mg, Mo and Zn content. In addition, 
they showed a medium predictive capability for Cu content, and had 
poor predictive capabilities for B, Ca, Fe and Mn content (Table 2). 

The prediction for the wheat kernel was comparable to the prediction 
for the wheat flour (Table 2). The variation amplitude of r2 for B, Ca and 
Zn was greater than 10% (Table 2, Fig. 3), which indicates that the r2 of 
B, Ca and Zn predicted by the use of wheat kernel spectral reflectance 
was relatively higher than that predicted by flour. The variation 
amplitude of RMSE for Ca, Mo and Zn was less than − 10% (Table 2, 
Fig. 3), which indicates that a smaller prediction error for Ca, Mo and Zn 
was obtained when using wheat kernel spectra than using the flour 
spectra. Therefore, the prediction power of the wheat kernel models was 
slightly better than that of wheat flour models. 

The VIP is a standard method to identify the most important wave-
length region from the PLSR model. The regions of high importance to 
all element models existed in both visible and NIR regions (Fig. 4). For 
wheat kernels, 400–450 nm and 850–950 nm showed high importance 
for all element models, and the peak at 675 nm was important for most 
elements (Fig. 4A). The VIP curves for the models (B, Fe and Mn) with 
poor prediction performance showed many small peaks, while the VIP 
curves for those models (Ca, Mg, Mo and Zn) with good prediction 
performance showed fewer peaks (Fig. 4A). For wheat flour, 
400–425 nm and 850–950 nm showed the high importance for all 
element models, and the peak at 675 nm was important for B, Ca, Fe, Mn 
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and Zn (Fig. 4B). The VIP results of wheat flour also revealed a certain 
correlation between the smoothness of VIP curves and the model per-
formance. The VIP curves had more peaks of the model with poor pre-
diction performance, such as B, Ca, Fe and Mn (Fig. 4B). The VIP curves 
for the wheat kernel model show fewer peaks than the wheat flour 
model. 

The r2 of the PLSR model using six spectral preprocessing techniques 
and the VIP-based wavelength selection is shown in Table S4. The dif-
ference range of r2 was − 0.28–0.03 for wheat kernel and − 0.24–0.04 for 
wheat flour between using raw data and using spectral preprocessing or 
wavelength selection. Therefore, the prediction accuracy of the PLSR 
model was not significantly improved when applying the spectral pre-
processing or VIP-based wavelength selection. 

4. Discussion 

A large data set of wheat micronutrient contents (631 samples) from 
13 wheat cultivars under different environmental conditions and agro-
nomical management practices were presented in this study. And this 
study has demonstrated the capability of non-destructive prediction of 
wheat micronutrient contents using wheat kernel imaging spectroscopy. 

4.1. Variation in wheat micronutrients 

A large variation (CV > 10%) in B, Ca, Cu, Fe, Mo and Zn was 
observed in this study. Similarly, a previous study found that the CV of 
Ca, Cu, Fe, Mn and Zn in 265 Chinese wheat cultivars was greater than 

Fig. 2. The mean, ± standard deviation, minimum and maximum spectral reflectance for wheat kernel (a, n = 631) and wheat flour (b, n = 631) samples.  

Table 1 
Descriptive statistics of the wheat micronutrient contents for the modelling calibration and validation datasets.  

Nutrient Wheat kernel Wheat flour 

SN Mean Max Min CV (%) SN Mean Max Min CV (%) 

mg/kg mg/kg 

B 489 1.18 2.60 0.07  38.6 485 1.21 2.60 0.07  36.7 
Ca 544 324 431 222  12.0 544 324 437 222  11.8 
Cu 536 4.32 6.81 2.73  19.5 535 4.32 6.70 2.73  19.5 
Fe 536 32.02 42.14 23.10  11.1 537 31.96 43.05 24.17  10.9 
Mg 564 1458 1796 1226  7.8 563 1463 1796 1213  7.9 
Mn 558 31.91 39.28 21.52  8.7 561 31.92 39.71 24.85  8.6 
Mo 556 0.80 1.36 0.45  24.8 558 0.82 1.35 0.44  25.0 
Zn 567 26.23 41.63 14.66  22.6 563 26.14 41.56 14.66  22.8 

SN: sample number; CV: coefficient of variation. 

Table 2 
Performance comparison of hyperspectral reflectance of wheat kernel and wheat flour to predict wheat nutrient content.  

Nutrient r2 RMSE (mg/kg) Reg. Bias (mg/kg) 

WK WF VA WK WF VA WK WF VA 

B  0.28  0.21 37%  0.41  0.43 − 5%  0.78  0.83 − 6% 
Ca  0.70  0.48 45%  22.42  28.60 − 22%  56.10  161.04 − 65% 
Cu  0.57  0.59 − 4%  0.54  0.55 − 3%  1.52  1.72 − 12% 
Fe  0.34  0.35 − 2%  2.86  3.01 − 5%  18.48  16.32 13% 
Mg  0.74  0.72 2%  60.06  61.01 − 2%  287.81  375.54 − 23% 
Mn  0.34  0.32 5%  2.30  2.20 5%  17.37  16.76 4% 
Mo  0.82  0.77 6%  0.08  0.10 − 16%  0.08  0.12 − 29% 
Zn  0.77  0.63 23%  2.90  3.59 − 19%  3.75  8.49 − 56% 

r2: coefficient of determination; RMSE: root mean square error; Reg. bias: regression bias; WK: wheat kernel; WF: wheat flour; VA: variation amplitude, defined as the 
difference between wheat kernel and wheat flour divided by the wheat flour. 
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10% (Zhang et al., 2010). Although only 13 wheat cultivars were used in 
this study, the CV of Cu and Zn (19.5% and 22.6%) in this study was 
greater than the CV of Cu and Zn (12.0% and 14.6%) in the 265-cultivars 
study (Zhang et al., 2010). Previous studies have also shown that Cu and 
Zn content could be affected pronouncedly by the growing environ-
ments and nitrogen management (Zhang et al., 2010; Hamnér, Weih, 
Eriksson, & Kirchmann, 2017), which suggests that the observed large 
variations in Cu and Zn contents might be influenced by the varied 

environments conditions (multiple years and sites) and agronomical 
managements in this study. 

4.2. Performance of predicting wheat micronutrients using hyperspectral 
imaging 

Previous leaf-level studies showed that Ca (r2 = 0.70), Cu (r2 = 0.86), 
Fe (r2 = 0.68), Mg (r2 = 0.69), Mn (r2 = 0.64) and Zn (r2 = 0.73) in maize 

Fig. 3. Results for PLSR models of, Ca (a), Mo (b) and Zn (c) content (mg/kg) using hyperspectral reflectance of wheat kernel (A) and wheat flour (B). Calibration 
(gray triangles) and validation (color circles) data points are shown. 95% prediction interval (black lines), 95% confidence interval (grey lines), regression line (fine 
black line) and 1:1 line (dashed line) are shown. BJ8: Beijing 8, FK8: Fengkang 8, GY2018: Gaoyou 2018, GY5766: Gaoyou 5766, HM15: Hanmai 15, J411: Jing 411, 
JM22: Jimai 22, ND139: Nongda 139, ND399: Nongda 399, SM22: Shimai 22, ZM1062: Zhongmai 1062, ZM175: Zhongmai 175 and ZM578: Zhongmai 578. 
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and soybean leaves can be successfully predicted using leaf spectra in 
the spectral region of 550–1700 nm (Pandey et al., 2017). In addition, 
micronutrients of the grain had been well characterized and estimated 
by HSI (Wiegmann et al., 2019), and the results showed that Fe 
(r2 = 0.64), Mg (r2 = 0.81) and Zn (r2 = 0.71) in barley grain can be 
successfully predicted using kernel spectra in the spectral region of 
970–2500 nm. In contrast, this study failed to predict Fe (r2 = 0.34) and 
Mn (r2 = 0.34) in wheat kernels. This might be attributed to the fact that 
the value ranges of Fe and Mn contents in this experiment were rela-
tively small compared to Pandey, Ge, Stoerger, & Schnable (2017) and 
Wiegmann et al. (2019). Although the content of Mo was very low, a 
good predictive ability for Mo was found for the first time using HSI. The 
relatively large variation (CV = 24.8%) in Mo content might explain the 
high prediction performance. 

Spectral preprocessing and wavelength selection can improve the 
accuracy of prediction (Wu & Sun, 2013; Sendin, Williams, & Manley, 
2017). Spectral data preprocessing is an important step of chemometrics 

modeling, which is designed to correct the effects from random noise, 
light scattering and length variation of the light path to improve the 
performance of models (Wu & Sun, 2013). Most of the preprocessing 
steps can reduce the spectral- and spatial resolutions, but, preprocessing 
should only be applied when it is beneficial (Wu & Sun, 2013; Sendin, 
Williams, & Manley, 2017). Malmir et al. (2019) have shown that the 
orthogonal signal correction, standard normal variate, number of latent 
variables and multiplicative scatter correction could increase the accu-
racy of PLSR models. It has also been reported by Tamburini et al. (2017) 
that the full-multiplicative scatter correction, standard normal variate, 
the 1st and 2nd derivatives could increase the accuracy of the PLSR 
models. In contrast, Caporaso, Whitworth, & Fisk (2018a) showed that 
there was no improvement in the accuracy of models when applying the 
multiplicative scatter correction, standard normal variate, 1st or 2nd 
derivatives, which was similar to the results observed in this study. 

Wavelength selection can reduce the collinearity between contig-
uous wavelengths and eliminate irrelevant information (Wu & Sun, 

Fig. 4. PLSR model variable importance of projection (VIP) of wheat kernel (A) and wheat flour (B) for B, Ca, Cu, Fe, Mg, Mn, Mo and Zn contents (mg/kg). VIP 
values of 0.8 (dashed line) is shown. 

N. Hu et al.                                                                                                                                                                                                                                      



Food Chemistry 343 (2021) 128473

7

2013). It allows the transforming of the whole hyperspectral data cube 
into a reduced dimension, speeding up the data processing and 
improving the accuracy of the prediction results (Wu & Sun, 2013). 
However, as also observed in this study, the difference between using 
the full wavelengths and using the VIP-based wavelengths might be 
negligible (Bai et al., 2018). 

4.3. Comparison between predicting models of wheat kernel and flour 
samples 

Interestingly, the prediction of B, Ca, Mg, Mn, Mo and Zn was su-
perior based on the kernel spectra compared to the use of the flour 
spectra in this study. The difference in prediction accuracy between the 
prediction models of wheat kernel and flour samples could be explained 
in the following three aspects. Firstly, grinding kernels to flour samples 
could lead to an increase in spectral reflectance across all wavelengths, 
which might affect the prediction accuracy. Secondly, the content of 
micronutrients in wheat was relatively low, and most of them were 
concentrated in the aleurone layer (Brier et al., 2016). The Cu, Fe, Zn, 
Mg and Mo are mainly distributed at 30–85 μm from the edge of the 
grain, which corresponds to the aleurone layer, and Mn, Ca and B are 
mainly distributed at 20–50 μm (Wu et al., 2013; Brier et al., 2015, 
2016). The spectral signals can convey information of the sample com-
ponents in wheat flour by detecting into a depth of approximately 
1.8 mm (Laborde et al., 2020). Accordingly, HSI may have the ability to 
sense the nutrient variations in the aleurone layer of wheat kernels. 
Therefore, using kernel reflectance resulted in better predictions for B, 
Ca, Mg, Mn, Mo and Zn than using the flour reflectance data. And 
thirdly, kernel grinding generally dilutes micronutrients in the samples, 
which could have resulted in a poor prediction for B, Ca, Mg, Mn, Mo 
and Zn using flour spectra in this study. However, compared to the 
models based on flour spectra, models using kernel spectra did not 
improve the prediction accuracy for Fe and Cu. The subtle difference 
between the spectral predictions for individual micronutrients and the 
underlying mechanisms explaining the subtle difference still need 
further investigations in future. 

4.4. Important spectral regions for predicting wheat micronutrient content 

The VIP curves reveal the important spectral regions of predicting 
each wheat nutrient element. In this study, the important spectral re-
gions of wheat nutrient elements were 400–450 nm, 650–695 nm and 
850–950 nm, overlapping with the important wavelengths reported by 
Bai et al. (2018) for predicting mineral nutrition in edible tree nuts. For 
example, the spectral regions of 400 nm, 670–690 nm and 800–1000 nm 
have been reported as important bands for predicting Mg, Zn, Mn and Fe 
in edible tree nuts (Bai et al., 2018). In addition, the model performance 
was closely related to the number of peaks in the 400–950 nm spectral 
range contained in the VIP curve. Compared to Ca (r2 = 0.70), Mg 
(r2 = 0.74), Mo (r2 = 0.82) and Zn (r2 = 0.77) model, the VIP curves for B 
(r2 = 0.28), Fe (r2 = 0.34) and Mn (r2 = 0.34) models having poor pre-
diction performance had more peaks. This phenomenon has also been 
observed in Ely et al. (2019). 

5. Conclusion 

The Ca, Mg, Mo and Zn nutrients in wheat kernel/flour were pre-
dicted at high credibility by combining the PSLR modeling and the VIS- 
NIR hyperspectral imaging. The prediction accuracy of the wheat kernel 
was higher than that of wheat flour. This study highlights the great 
potential for a rapid and non-destructive determination of micro-
nutrients in kernels using hyperspectral images. These advances will 
provide opportunities for screening and breeding of high nutritional 
quality cereals, and can be widely applied to the assessment of cereal 
nutrition. 
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Pogson, B. J., Millar, A. H., Furbank, R. T., & Atkin, O. K. (2019). Predicting dark 
respiration rates of wheat leaves from hyperspectral reflectance. Plant, Cell and 
Environment, 42(7), 2133–2150. https://doi.org/10.1111/pce:13544. 

Delwiche, S. R., Graybosch, R. A., Amand, P. S., & Bai, G. (2011). Starch waxiness in 
hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy. Journal of 
Agricultural and Food Chemistry, 59(8), 4002–4008. https://doi.org/10.1021/ 
jf104528x. 

N. Hu et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.foodchem.2020.128473
https://doi.org/10.1016/j.foodchem.2020.128473
https://doi.org/10.1016/j.compag.2010.05.006
https://doi.org/10.1016/j.compag.2018.06.029
https://doi.org/10.1016/j.compag.2018.06.029
https://doi.org/10.2135/cropsci2009.09.0531
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0025
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0025
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0025
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0025
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0030
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0030
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0030
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0030
http://refhub.elsevier.com/S0308-8146(20)32335-9/h0030
https://doi.org/10.1016/j.foodchem.2017.07.048
https://doi.org/10.1016/j.foodchem.2017.07.048
https://doi.org/10.1080/05704928.2018.1425214
https://doi.org/10.1080/05704928.2018.1425214
https://doi.org/10.1111/pce:13544
https://doi.org/10.1021/jf104528x
https://doi.org/10.1021/jf104528x


Food Chemistry 343 (2021) 128473

8

Ely, K. S., Burnett, A. C., Lieberman-Cribbin, W., Serbin, S., Rogers, A. (2019). 
Spectroscopy can predict key leaf traits associated with source sink balance and 
carbon nitrogen status. Journal of Experimental Botany. doi: 10.1093/jxb/erz061 in 
press. 
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