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Doubled haploid (DH) breeding based on in vivo haploid induc-
tion has led to a new approach for maize breeding1. All mod-
ern haploid inducers used in DH breeding are derived from the 
haploid inducer line Stock6. Two key quantitative trait loci, 
qhir1 and qhir8, lead to high-frequency haploid induction2. 
Mutation of the gene MTL/ZmPLA1/NLD in qhir1 could gener-
ate a ~2% haploid induction rate (HIR)3–5; nevertheless, this 
mutation is insufficient for modern haploid inducers whose 
average HIR is ~10%6. Therefore, cloning of the gene under-
lying qhir8 is important for illuminating the genetic basis 
of haploid induction. Here, we present the discovery that 
mutation of a non-Stock6-originating gene in qhir8, namely, 
ZmDMP, enhances and triggers haploid induction. ZmDMP 
was identified by map-based cloning and further verified by 
CRISPR–Cas9-mediated knockout experiments. A single-
nucleotide change in ZmDMP leads to a 2–3-fold increase in 
the HIR. ZmDMP knockout triggered haploid induction with a 
HIR of 0.1–0.3% and exhibited a greater ability to increase the 
HIR by 5–6-fold in the presence of mtl/zmpla1/nld. ZmDMP 
was highly expressed during the late stage of pollen develop-
ment and localized to the plasma membrane. These findings 
provide important approaches for studying the molecular 
mechanism of haploid induction and improving DH breeding 
efficiency in maize.

Doubled haploid (DH) breeding via in vivo haploid induction has 
been extensively used in modern maize breeding1. The production 
of haploids depends on haploid inducers, and the ancestral haploid 
inducer line Stock6 can induce ~3% of maternal haploids7. The hap-
loid induction rate (HIR) is heritable and can be improved by phe-
notypic selection, allowing the breeding of modern haploid inducers 
with increased HIR values6,8. The HIR of modern haploid inducers 
has been improved to ~10%, which makes it possible to produce DH 
lines efficiently in large-scale commercial breeding programmes1. 
With respect to the genetic basis of haploid induction, a comprehen-
sive quantitative trait loci mapping study of the HIR demonstrated 
that two loci function significantly2, that is, qhir1 in bin 1.04 and qhir8 
in bin 9.01 explained ~66% and ~20%, respectively, of the genetic 
variance. Based on the fine mapping of qhir1 (ref. 9), the Stock6-
derived haploid-induction gene MTL/ZmPLA1/NLD was cloned3–5,10. 
qhir8 exists in high-HIR inducer lines such as CAU5, whereas qhir8 
is absent in low-HIR inducer lines such as CAUHOI. qhir8 increases 
the HIR by 2–3-fold in the presence of qhir1 (ref. 11). Moreover, muta-
tion of the orthologues of ZmPLA1/MTL/NLD could trigger haploid 
induction in other crop species such as rice, which makes cloning of 
ZmDMP extremely promising with respect to crop breeding12.

In 2016, based on the 789-kb mapping region of qhir8, 16 F3 
families were used to narrow the mapping region to a 138-kb region 
flanked by markers ZS4307 and ZS4446 (Fig. 1a and Supplementary 
Fig. 1). To analyse the sequence within the mapping region in 
CAU5, two positive clones covering the region were screened from 
a CAU5 bacterial artificial chromosome (BAC) library4; these 
clones provided sequence information and polymorphic markers 
(Supplementary Fig. 2 and Supplementary Table 1). Using these 
markers, we ultimately narrowed the mapping region to a 318-bp 
region via the use of 21 new F3 families (Fig. 1a and Supplementary 
Fig. 1). The final mapping region was located within the protein-
coding sequence of the gene GRMZM2G465053, which encodes a 
DUF679 domain membrane protein and was named ZmDMP (Fig. 
1b). One single-nucleotide substitution was found in the mapping 
region between CAU5 and CAUHOI, that is, from thymine (T) 
(CAUHOI) to cytosine (C) (CAU5), at 131 bp from the initiating 
codon ATG, which led to an amino acid substitution from methio-
nine to threonine (Fig. 1b). Therefore, ZmDMP was considered the 
candidate gene, and the single-base substitution was considered to 
contribute to the high HIR observed for CAU5.

To verify the candidate, we knocked out ZmDMP (zmdmp-ko) 
with the clustered regularly interspaced short palindromic repeats 
(CRISPR)–CRISPR-associated protein 9 (Cas9) system13. Two trans-
genic events, T0–15 and T0–17, which harboured frameshift muta-
tions within ZmDMP, were chosen for subsequent experiments 
(Fig. 1c). Individual plants with the genotype combinations zmpla1-
(zmdmp-ko), zmpla1-ZmDMP and zmpla1-ZmDMP/zmdmp-ko 
(zmpla1-heterozygous) were screened in the F2 population derived 
from T0–15 × CAUHOI and T0–17 × CAUHOI with molecular 
markers (Supplementary Table 1). These individuals were planted 
and pollinated to hybrid ZhengDan958 (ZD958) to evaluate their 
HIR. For the F2 individuals derived from either T0–15 × CAUHOI 
or T0–17 × CAUHOI, the average HIR was ~7% for the genotype 
combination zmpla1-(zmdmp-ko), which was significantly higher 
than the ~1% value for the genotype combination zmpla1-ZmDMP. 
The average HIR for the genotype combination zmpla1-hetero-
zygous was in between that for zmpla1-(zmdmp-ko) and zmpla1-
ZmDMP (Wilcoxon rank-sum test, P < 0.01) (Fig. 2a). When grown 
in the field, all putative haploid plants exhibited typical haploid 
characteristics, for example, plants were short and sterile (Fig. 3a–
c). Haploids were further verified using ten polymorphic molecular 
markers (Fig. 3d, Supplementary Fig. 3 and Supplementary Table 1)  
and flow cytometry (Fig. 3e), which revealed that all were true hap-
loids with only the female genotype, that is, demonstrated their 
maternal haploid properties. In accordance with the functional 
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attributes of qhir8, which can lead to a high frequency of endo-
sperm aborted kernels (EnAs)11, we also observed a high frequency 
of EnAs in ZD958 ears pollinated by zmpla1-(zmdmp-ko) (Fig. 2c). 
Statistical analysis revealed that, in F2 individuals derived from 
either T0–15 or T0–17, the presence of homozygous zmdmp-ko sig-
nificantly increased the EnA rate from ~10% to ~40% (Fig. 2b). The 
fact that the zmdmp-ko allele resulted in a significant increase in 
both the HIR and the EnA rate suggested that zmdmp is responsible 
for haploid induction. Moreover, we found that the zmdmp-ko allele 
contributed significantly more (approximately sixfold increase) to 
the HIR than did the natural allele of CAU5 (Fig. 2d). This effect 
of the zmdmp-ko allele on the HIR may represent a new way to 
improve the HIR of modern inducer lines using CRISPR–Cas9.

Considering the independent role of zmpla1 in haploid induc-
tion, we also tested whether zmdmp-ko could act independently in 
haploid induction when pollinated to hybrids or self-pollinated. Six 
haploids were found among the 5,080 progenies obtained from the 
ZD958 × zmdmp-ko cross, whereas no haploid was detected among 
4,039 control individuals from ZD958 × ZmDMP (Supplementary 
Table 2). Three haploids were identified among the 949 self-pol-
linated progenies of zmdmp-ko, whereas no haploid was detected 
among the 844 self-pollinated progenies of ZmDMP. Therefore, 
these results imply that knockout of ZmDMP can lead to indepen-
dent haploid induction.

Although the ability of qhir8 to promote haploid induction 
was well established in our previous studies2,11, the implied inter-
action between qhir1 and qhir8 has not been assessed. Therefore, 
by constructing near-isogenic lines (NILs) in a B73 background, 
including CAU6(ZmPLA1-ZmDMP), CAU6(ZmPLA1-zmdmp), CAU6 (zmpla1-ZmDMP) 
and CAU6(zmpla1-zmdmp), we studied the genetic interaction between 
ZmPLA1 and ZmDMP via pollinating the hybrid ZD958. We first 
determined the percentage of undeveloped zygotes by calculat-
ing the ratio of visible seeds to the number of embryo sacs, that is, 
the silk number. The wild-type NIL CAU6(ZmPLA1-ZmDMP) had ~15% 

undeveloped kernels and 1.36% kernel abortions, and the HIR was 
as low as 0.13% (Supplementary Fig. 4a). The presence of zmdmp 
in CAU6(ZmPLA1-zmdmp) led to a slight increase in the percentage of 
undeveloped kernels, that is, from 15% to 21%, and the percent-
age of diploid kernels decreased to 76.9%; the HIR was 0.15%. For 
CAU6(zmpla1-ZmDMP), we observed a sharp decrease in the percentage 
of diploid kernels, that is, from 82.8% to 39.6%, whereas the per-
centage of undeveloped kernels increased to 45.9%. Moreover, the 
percentages of haploids, EnA and embryo aborted kernels (EmA) 
increased significantly. In the double-mutant line CAU6(zmpla1-zmdmp), 
the percentage of undeveloped kernels increased from 45.9% to 
56.8%, and the proportion of both EnA and EmA nearly doubled 
relative to CAU6(zmpla11-ZmDMP). The HIRs for both CAU6(ZmPLA1-ZmDMP) 
and CAU6(ZmPLA1-zmdmp) were very low but were significantly higher in 
CAU6(zmpla1-ZmDMP). The HIR of CAU6(zmpla1-zmdmp) was nearly triple that 
of CAU6(zmpla1-ZmDMP) (Supplementary Fig. 4a). Therefore, zmdmp 
had a greater contribution to the HIR in the presence of zmpla1.

Staining of pollen with fluorescein diacetate (FDA) among the 
four genotype combinations revealed that the percentage of high-
viability pollen ranged from 42.4% to 44.5%, the percentage of low-
viability pollen ranged from 53.6% to 55.3% and that of dead pollen 
ranged from 1.8% to 2.3% (Supplementary Fig. 4b,c). For each 
pollen viability class, the t-test revealed no significant difference 
between any two of the four genotype combinations. This result was 
further verified by a pollen germination experiment, which also 
did not show any difference among the four genotype combina-
tions (Supplementary Fig. 4b,d). These results indicated that pollen 
viability was not significantly affected by zmpla1 or zmdmp or their 
combination.

As previously reported, wild-type ZmPLA1 is a plasma mem-
brane-anchored protein that is highly expressed in developing and 
mature pollen5. Expression pattern analysis of ZmDMP and zmdmp 
via quantitative reverse transcription PCR (qRT–PCR) revealed that 
each of ZmDMP and zmdmp is highly expressed in mature pollen 
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but at much lower levels in immature anthers and kernels at dif-
ferent stages (Fig. 4a), implying that ZmDMP may function dur-
ing the late stage of gametophyte development. In mature pollen, 
zmdmp is expressed at levels significantly higher than ZmDMP,  
presumably as a consequence of feedback regulation. To confirm  
the developmental expression pattern of ZmDMP, we gen-
erated transgenic plants harbouring either pZmDMP::GUS 
(β-glucuronidase) or pzmdmp::GUS. Staining for GUS revealed 

strong expression of both pZmDMP::GUS and pzmdmp::GUS 
in pollens, silks and seeds before 6 days after pollination (DAP)  
(Fig. 4b–d), which was consistent with the qRT–PCR results. The 
proteins encoded by either the wild-type Ubi::ZmDMP-eGFP (Ubi, 
ubiquitin; eGFP, enhanced green fluorescent protein) (CAUHOI) 
or mutant Ubi::zmdmp-eGFP (CAU5) colocalized with the 
plasma membrane marker AtPIP2a-mCherry in maize protoplasts  
(Fig. 4e,f), whereas the GFP signal for the control group was 
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observed at both the plasma membrane and the nucleus (Fig. 4g). 
These results demonstrated that ZmDMP and ZmPLA1 have similar 
expression patterns and subcellular localization.

Although zmdmp has already been fixed in modern haploid 
inducers, knowledge concerning its origin is scarce. An analysis 
of 50,000 single-nucleotide polymorphisms (SNPs) of 53 haploid 
inducers6 revealed that the haplotype of zmdmp is conserved in 32 
recently developed haploid inducers but diverse in 21 haploid induc-
ers developed earlier (Supplementary Fig. 5a); the average HIR of 
the 32 recent haploid inducer lines with zmdmp was significantly 
higher than the 21 inducer lines without zmdmp (Supplementary 
Fig. 5b). In combination with the pedigree of the haploid induc-
ers6, this result suggests that qhir8 was strongly selected and became 
rapidly fixed in the newly developed inducer lines under phenotype 
selection. Analysis of the ZmDMP sequence in 138 non-inducer 
lines revealed that 19 lines carry the same haplotype as CAU5 and 44 
lines carry the same haplotype as CAUHOI (Supplementary Table 3),  
demonstrating that the causal SNP that we identified is not rare 
but exists widely in different germplasms. A recent study reported 
that the in vivo haploid induction system in maize can be extended 
to other crop species, such as rice12, which undoubtedly improves 
the significance of the system. Phylogenetic analysis of ZmDMP 
in plants revealed that this gene is quite conserved among maize, 
sorghum and foxtail millet, with amino acid sequence identities of 
~91% (maize-sorghum) and ~73% (maize-millet) (Supplementary 
Fig. 6 and Supplementary Table 4). These results highlight the 
potential application of these orthologues in DH breeding of differ-
ent crop species.

These findings reveal that the SNP in ZmDMP significantly 
improves the HIR in the presence of mtl/zmpla1/nld. The novel 
functions of the knockout allele, including independent haploid 
induction and greater contribution to the HIR, highlight the huge 
potential for further improvement of maize DH breeding effi-
ciency. The characterization of ZmDMP revealed its similarity with 
ZmPLA1, which provides an important clue for future studies on 
the molecular mechanism of haploid induction. Considering the 
high sequence conservation among orthologues of ZmDMP, our 
findings have the potential to be applied rapidly along with the help 
of gene editing to accelerate crop breeding.

Methods
Materials. During the ultrafine mapping of qhir8, we used two haploid inducer 
lines, namely, CAUHOI (HIR: ~2%) and CAU5 (HIR: ~10%, the donor parent of 
qhir8), to generate a F2,3 mapping population11; these lines differed for the analysis 
of qhir8. Recombinants were screened from the F2 population and self-pollinated 
to obtain F3 families. A receptor line that lacks haploid induction ability was used 
for transformation. The transgenic events were crossed with CAUHOI to obtain 
mutant combinations between zmpla1 and zmdmp-ko. To verify the effects of 
the candidate gene, we pollinated a single hybrid tester, ZD958, with pollen from 
the three combinations: zmpla1-(zmdmp-ko), zmpla1-ZmDMP and zmpla1-
heterozygous. To determine sequence variations in ZmDMP, we sequenced 
the gene among 138 inbred lines that were chosen from different germplasms 
(Supplementary Table 3). CAU6 is a haploid inducer line with both qhir1 and 
qhir8 in the B73 background, and B73_R1-nj is a B73 inbred line with the marker 
R1-nj. The NILs of CAU6(ZmPLA1-ZmDMP), CAU6(ZmPLA1-zmdmp), CAU6(zmpla1-ZmDMP) and 
CAU6(zmpla1-zmdmp) in the B73 background were constructed by crossing CAU6 with 
B73_R1-nj, followed by two generations of self-pollination. The four NILs share a 
~95% identical background as assessed with an Illumina maize SNP 6K genotyping 
array. ZmPLA1 and ZmDMP represent the wild-type alleles, zmpla1 represents the 
CAUHOI/CAU5-mutant allele, zmdmp represents the CAU5-mutant allele and 
zmdmp-ko represents the knockout allele.

Ultrafine mapping of qhir8. Based on the 789-kb mapping region of qhir8 that we 
identified11, we further narrowed the mapping region using a progeny strategy9,11,14; 
that is, recombinants in a large F2 population were screened with newly 
developed molecular markers, after which the recombinants were self-pollinated 
to produce F3 progeny. Genotyping was performed to classify F3 individuals as 
the homozygous CAU5, homozygous CAUHOI or the heterozygous genotype. 
Moreover, phenotyping was performed for each genotype class by pollinating at 
least six ears of hybrid ZD958. The Wilcoxon rank-sum test was used to calculate 
phenotypic differences among the different genotype classes11. For each F3 family, 

significant differences among the three genotype classes were inferred to reflect the 
presence of qhir8; otherwise, qhir8 was inferred to be absent.

Knockout of ZmDMP with the CRISPR–Cas9 system. Two guide RNAs were 
designed to target two sites within the exon of the candidate gene ZmDMP, and the 
sequences for the guide RNAs were then inserted into the pBUE411 vector13. At 
12 DAP, embryos from the receptor line were used for Agrobacterium (EHA105)-
mediated transformation. Positive transformation events were screened with 
bialaphos medium (1.5 mg l−1) and verified by DNA sequencing at the seedling 
stage. Knockout lines with frameshift mutations were transplanted to a greenhouse 
and then self-pollinated to acquire homozygous knockout mutants.

Phenotyping of knockout lines. To determine whether zmdmp-ko could 
act independently to trigger haploid induction, the knockout plants with a 
homozygous mutant genotype were self-pollinated and then pollinated to the 
single hybrid ZD958. The resultant putative haploids were screened among 
the crossed and self-pollinated progenies, and the wild-type lines were used 
as a control. To verify the effect of zmdmp-ko in the presence of zmpla1, an F2 
population was obtained by crossing zmdmp-ko plants with CAUHOI. The three 
genotype combinations zmpla1-(zmdmp-ko), zmpla1-ZmDMP and zmpla1-
heterozygous in the F2 population were screened with molecular markers. The HIR 
values for the three genotype classes were determined by crossing with ZD958. 
Differences in phenotype among the three genotype classes were assessed via the 
Wilcoxon rank-sum test, and a significant difference was taken to mean that the 
knockout allele had an effect on haploid induction.

Identifying haploid plants and classifying aborted kernels. During the ultrafine 
mapping of qhir8, because all individuals carried homozygous R1-nj markers, 
haploids could be recognized accurately with R1-nj. However, no kernel marker 
was available for transgenic plants and their combinations with CAUHOI, so we 
applied two molecular markers (Supplementary Fig. 3 and Supplementary Table 
1; Chr3–26.4 and Chr5–94.2) with polymorphism between the receptor line and 
ZD958 to screen putative haploids in a large population at the seedling stage. Then, 
we determined whether these haploids had a maternal origin using ten additional 
molecular markers (Supplementary Fig. 3 and Supplementary Table 1). The 12 
markers distributed on 7 different chromosomes. Flow cytometry was then used to 
verify the ploidy of the haploids, and those haploids whose peaks were analogous 
to those of standard haploids were deemed true haploids, and those haploids whose 
peaks were analogous to those of standard diploids were deemed diploids4. The 
field performance of these putative haploids, which had short and male-sterile 
phenotypes, was evaluated again with flow cytometry. Except for haploids, the 
abnormally developed kernels appeared on the ears of ZD958, including EnA and 
EmA; therefore, they were classified according to previous standards15. The HIR, 
EmA rate and EnA rate were calculated according to Xu et al.15.

Subcellular localization. Total RNA was isolated from mature pollen of both 
zmdmp (CAUHOI) and ZmDMP (CAU5) via TRIzol reagent. Reverse transcription 
was performed with oligo(dT) primers to obtain full-length complementary DNAs. 
The coding sequence of the gene without a termination codon (TAA) was cloned 
and inserted into the vector PCUN-eGFP, which is driven by the ubiquitin promoter. 
The construct AtPIP2a-mCherry, the product of which localizes to the cytoplasmic 
side of the maize protoplast membrane, was used as a marker. Sequencing-validated 
constructs of Ubi::ZmDMP-eGFP, Ubi::zmdmp-eGFP and AtPIP2a-mCherry 
were used for polyethylene glycol-mediated transformation into maize protoplasts. 
After culturing at 25 °C for 16 h, the colocalization signal of each of Ubi::ZmDMP-
eGFP and AtPIP2a-mCherry and of Ubi::zmdmp-eGFP and AtPIP2a-mCherry 
was observed and imaged with a confocal microscope (Zeiss 710). As a control, 
protoplasts were also transformed with the unmodified vector PCUN-eGFP.

Expression analysis. To analyse the expression characteristics of ZmDMP, 1-mm 
immature anthers, 4-mm immature anthers, mature pollen and young kernels 
at 5, 10 or 15 DAP of the NILs CAU6(zmpla1-ZmDMP) and CAU6(zmpla1-zmdmp) were 
collected with three biological replicates and then frozen immediately in liquid 
nitrogen. Total RNA was extracted with TRIzol and then reverse transcribed 
into cDNA. The primer RTDMP with a single unique PCR product of 181 bp 
was used for qRT–PCR, which was performed with an ABI 7500 system. To 
generate GUS reporter lines, the promoters (upstream of the ATG start codon) of 
ZmDMP (CAUHOI, 2,743 bp) and zmdmp (CAU5, 2,707 bp) were amplified with 
primers (Supplementary Table 1), and the resultant PCR products were ligated 
into HindIII/BamHI-linearized pCM3300M-GUS using the Seamless Assembly 
Cloning Kit (C5891–25, Clone Smarter). For GUS histochemical staining16, plant 
tissues were first subjected to vacuum infiltration at 37 °C for 24 h in the following 
solution: 50 mM sodium phosphate (pH 7.0), 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 
0.1% v/v Triton X-100 and 1 mM X-Gluc. Tissues were then washed in 70% 
ethanol. Pollen and mature anthers were observed from both pZmDMP::GUS and 
pzmdmp::GUS plants and receptor tissues including silks (2 h after pollination) and 
seeds at 2, 4, 6 or 8 DAP crossed with both pZmDMP::GUS and pzmdmp::GUS. 
Corresponding tissues from the self-pollinated receptor line were used as controls. 
Tissues were observed and photographed using a Nikon Eclipse Ti2 microscope 
and a Leica M60 stereo microscope.
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Pollen viability evaluation. The FDA working solution was prepared by mixing 
100 µl FDA stock solution (0.5% FDA in acetone) with 4.9 ml of 0.5 M sucrose 
solution17. Fresh pollen (20 mg) sampled from three biological replicates was 
immediately mixed with the working solution following pollen collection in the 
field. Each mixture was left in the dark for 1 h without cover to guarantee an 
abundant supply of oxygen for the esterase reaction. Fluorescence was observed 
with a fluorescence microscope (BX 53, Olympus) with an excitation wavelength 
of 485 nm. Pollen that exhibited strong green fluorescence emanating from 
the cytoplasm was deemed as high-viability pollen, pollen that exhibited weak 
fluorescence was deemed as low-viability pollen, and pollen that could not be 
stained was deemed dead. In the pollen germination experiment, fresh mature 
pollen was sampled from plants in the field and sprinkled into a medium with 
18% sucrose, 0.03% boric acid, 0.03% calcium nitrate, 0.03% potassium nitrate, 
0.02% magnesium sulphate and 9% polyethylene glycol 4000 (ref. 18). Pollen was 
germinated at room temperature for 1 h. Images were captured using a Nikon 
Eclipse Ti2 microscope. Pollen with elongated tubes was deemed as viable pollen, 
and pollen without such tubes was deemed dead. Pollen viability was evaluated by 
calculating the germination rate.

Haplotype origin analysis. The 50,000 SNP chip-based genotypes of 53 haploid 
inducers and 1,169 inbred lines were downloaded from http://www.genetics.
org/lookup/suppl/doi:10.1534/genetics.115.184234/-/DC1/FileS4.zip (ref. 7) and 
used to analyse the haplotypes of ZmDMP in the target region, which included 
10 upstream SNPs and 10 downstream SNPs. Haploid inducers were grouped 
according to their haplotype, and the distribution of the HIR for each group was 
analysed via a box plot.

Phylogenetic analysis of the ZmDMP-encoded protein. The amino acid sequence 
encoded by ZmDMP and sequences for its top 17 most identical orthologues 
were downloaded from http://www.gramene.org/, and the sequence identities 
were calculated with DNAMAN 8. Sequence alignment was performed with the 
software MEGA-X, and the phylogenetic tree was constructed with the neighbour-
joining algorithm.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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